27,549 research outputs found

    String Effects on Fermi--Dirac Correlation Measurements

    Get PDF
    We investigate some recent measurements of Fermi--Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e+ee^+e^--annihilation at the Z0Z^0 peak. In the hadronization models there are besides the Fermi--Dirac correlation effect also a strong dynamical (anti-)correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations which are not related to Fermi--Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model-uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to make any firm conclusion about the source radii relevant for baryon production at LEP

    Cross-shaped and Degenerate Singularities in an Unstable Elliptic Free Boundary Problem

    Get PDF
    We investigate singular and degenerate behavior of solutions of the unstable free boundary problem Δu=χ{u>0}.\Delta u = -\chi_{\{u>0\}} . First, we construct a solution that is not of class C1,1C^{1,1} and whose free boundary consists of four arcs meeting in a {\em cross}-shaped singularity. This solution is completely unstable/repulsive from above and below which would make it hard to get by the usual methods, and even numerics is non-trivial. We also show existence of a degenerate solution. This answers two of the open questions in a recent paper by R. Monneau-G.S. Weiss

    A covariant action principle for dissipative fluid dynamics: From formalism to fundamental physics

    Full text link
    We present a new variational framework for dissipative general relativistic fluid dynamics. The model extends the convective variational principle for multi-fluid systems to account for a range of dissipation channels. The key ingredients in the construction are i) the use of a lower dimensional matter space for each fluid component, and ii) an extended functional dependence for the associated volume forms. In an effort to make the concepts clear, the formalism is developed in steps with the model example of matter coupled to heat considered at each level. Thus we discuss a model for heat flow, derive the relativistic Navier-Stokes equations and discuss why the individual dissipative stress tensors need not be spacetime symmetric. We argue that the new formalism, which notably does not involve an expansion away from an assumed equilibrium state, provides a conceptual breakthrough in this area of research and provide an ambitious list of directions in which one may want to extend it in the future. This involves an exciting set of problems, relating to both applications and foundational issues.Comment: 21 pages RevTex, 3 pdf figures, matches the published version. arXiv admin note: text overlap with arXiv:1107.1005 by other author

    Investigations into the BFKL Mechanism with a Running QCD Coupling

    Get PDF
    We present approximations of varying degree of sophistication to the integral equations for the (gluon) structure functions of a hadron (``the partonic flux factor'') in a model valid in the Leading Log Approximation with a running coupling constant. The results are all of the BFKL-type, i.e. a power in the Bjorken variable x_B^{-\lambda} with the parameter \lambda determined from the size \alpha_0 of the ``effective'' running coupling \bar{\alpha}\equiv 3\alpha_s/\pi= \alpha_0/\log(k_{\perp}^2) and varying depending upon the treatment of the transverse momentum pole. We also consider the implications for the transverse momentum (k_{\perp}) fluctuations along the emission chains and we obtain an exponential falloff in the relevant \kappa\equiv \log(k_{\perp}^2)-variable, i.e. an inverse power (k_{\perp}^2)^{-(2+\lambda)} with the same parameter \lambda. This is different from the BFKL-result for a fixed coupling, where the distributions are Gaussian in the \kappa-variable with a width as in a Brownian motion determined by ``the length'' of the emission chains, i.e. \log(1/x_B). The results are verified by a realistic Monte Carlo simulation and we provide a simple physics motivation for the change.Comment: 24 pages, 10 supplementary files, submitted to Physical Review

    The time evolution of marginally trapped surfaces

    Full text link
    In previous work we have shown the existence of a dynamical horizon or marginally trapped tube (MOTT) containing a given strictly stable marginally outer trapped surface (MOTS). In this paper we show some results on the global behavior of MOTTs assuming the null energy condition. In particular we show that MOTSs persist in the sense that every Cauchy surface in the future of a given Cauchy surface containing a MOTS also must contain a MOTS. We describe a situation where the evolving outermost MOTS must jump during the coalescence of two seperate MOTSs. We furthermore characterize the behavior of MOTSs in the case that the principal eigenvalue vanishes under a genericity assumption. This leads to a regularity result for the tube of outermost MOTSs under the genericity assumption. This tube is then smooth up to finitely many jump times. Finally we discuss the relation of MOTSs to singularities of a space-time.Comment: 21 pages. This revision corrects some typos and contains more detailed proofs than the original versio

    Elastic deformations of compact stars

    Full text link
    We prove existence of solutions for an elastic body interacting with itself through its Newtonian gravitational field. Our construction works for configurations near one given by a self-gravitating ball of perfect fluid. We use an implicit function argument. In so doing we have to revisit some classical work in the astrophysical literature concerning linear stability of perfect fluid stars. The results presented here extend previous work by the authors, which was restricted to the astrophysically insignificant situation of configurations near one of vanishing stress. In particular, "mountains on neutron stars", which are made possible by the presence of an elastic crust in neutron stars, can be treated using the techniques developed here.Comment: 29 page

    The nonlinear development of the relativistic two-stream instability

    Full text link
    The two-stream instability has been mooted as an explanation for a range of astrophysical applications from GRBs and pulsar glitches to cosmology. Using the first nonlinear numerical simulations of relativistic multi-species hydrodynamics we show that the onset and initial growth of the instability is very well described by linear perturbation theory. In the later stages the linear and nonlinear description match only qualitatively, and the instability does not saturate even in the nonlinear case by purely ideal hydrodynamic effects.Comment: 15 pages, 9 figure
    corecore